OWA-FRPS: A Prototype Selection Method Based on Ordered Weighted Average Fuzzy Rough Set Theory
نویسندگان
چکیده
The Nearest Neighbor (NN) algorithm is a well-known and effective classification algorithm. Prototype Selection (PS), which provides NN with a good training set to pick its neighbors from, is an important topic as NN is highly susceptible to noisy data. Accurate state-of-the-art PS methods are generally slow, which motivates us to propose a new PS method, called OWA-FRPS. Based on the Ordered Weighted Average (OWA) fuzzy rough set model, we express the quality of instances, and use a wrapper approach to decide which instances to select. An experimental evaluation shows that OWA-FRPS is significantly more accurate than state-of-the-art PS methods without requiring a high computational cost.
منابع مشابه
FRPS: A Fuzzy Rough Prototype Selection method
The k Nearest Neighbour (k NN) method is a widely used classification method that has proven to be very effective. The accuracy of k NN can be improved by means of Prototype Selection (PS), that is, we provide k NN with a reduced but reinforced dataset to pick its neighbours from. We use fuzzy rough set theory to express the quality of the instances, and use a wrapper approach to determine whic...
متن کاملOrdered Weighted Average Based Fuzzy Rough Sets
Traditionally, membership to the fuzzy-rough lower, resp. upper approximation is determined by looking only at the worst, resp. best performing object. Consequently, when applied to data analysis problems, these approximations are sensitive to noisy and/or outlying samples. In this paper, we advocate a mitigated approach, in which membership to the lower and upper approximation is determined by...
متن کاملA hybrid filter-based feature selection method via hesitant fuzzy and rough sets concepts
High dimensional microarray datasets are difficult to classify since they have many features with small number ofinstances and imbalanced distribution of classes. This paper proposes a filter-based feature selection method to improvethe classification performance of microarray datasets by selecting the significant features. Combining the concepts ofrough sets, weighted rough set, fuzzy rough se...
متن کاملImproving the β-Precision and OWA Based Fuzzy Rough Set Models: Definitions, Properties and Robustness Analysis
Since the early 1990s, many authors have studied fuzzy rough set models and their application in machine learning and data reduction. In this work, we adjust the β-precision and the ordered weighted average based fuzzy rough set models in such a way that the number of theoretical properties increases. Furthermore, we evaluate the robustness of the new models a-β-PREC and a-OWA to noisy data and...
متن کاملA Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset
Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...
متن کامل